Gradient regularization of Newton method with Bregman distances
Nikita Doikov () and
Yurii Nesterov ()
Additional contact information
Nikita Doikov: Université catholique de Louvain, ICTEAM
Yurii Nesterov: Université catholique de Louvain, LIDAM/CORE, Belgium
No 3253, LIDAM Reprints CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
In this paper, we propose a first second-order scheme based on arbitrary non-Euclidean norms, incorporated by Bregman distances. They are introduced directly in the Newton iterate with regularization parameter proportional to the square root of the norm of the current gradient. For the basic scheme, as applied to the composite convex optimization problem, we establish the global convergence rate of the order O(k−2) both in terms of the functional residual and in the norm of subgradients. Our main assumption on the smooth part of the objective is Lipschitz continuity of its Hessian. For uniformly convex functions of degree three, we justify global linear rate, and for strongly convex function we prove the local superlinear rate of convergence. Our approach can be seen as a relaxation of the Cubic Regularization of the Newton method (Nesterov and Polyak in Math Program 108(1):177–205, 2006) for convex minimization problems. This relaxation preserves the convergence properties and global complexities of the Cubic Newton in convex case, while the auxiliary subproblem at each iteration is simpler. We equip our method with adaptive search procedure for choosing the regularization parameter. We propose also an accelerated scheme with convergence rate O(k−3) , where k is the iteration counter.
Keywords: Newton method; Regularization; Convex optimization; Global complexity bounds; Large-scale optimization (search for similar items in EconPapers)
Pages: 25
Date: 2023-01-01
Note: In: Mathematical Programming, 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvrp:3253
DOI: 10.1007/s10107-023-01943-7
Access Statistics for this paper
More papers in LIDAM Reprints CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().