Persistence, Randomization, and Spatial Noise
Morgan Kelly
No 16609, CEPR Discussion Papers from C.E.P.R. Discussion Papers
Abstract:
Historical persistence studies and other regressions using spatial data commonly have severely inflated t statistics, and different standard error adjustments to correct for this return markedly different estimates. This paper proposes a simple randomization inference procedure where the significance level of an explanatory variable is measured by its ability to outperform synthetic noise with the same estimated spatial structure. Spatial noise, in other words, acts as a treatment randomization in an artificial experiment based on correlated observational data. The performance of twenty persistence studies relative to spatial noise is examined.
Date: 2021-10
References: Add references at CitEc
Citations:
Downloads: (external link)
https://cepr.org/publications/DP16609 (application/pdf)
CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cpr:ceprdp:16609
Ordering information: This working paper can be ordered from
https://cepr.org/publications/DP16609
Access Statistics for this paper
More papers in CEPR Discussion Papers from C.E.P.R. Discussion Papers Centre for Economic Policy Research, 33 Great Sutton Street, London EC1V 0DX.
Bibliographic data for series maintained by ().