The Virtue of Complexity in Return Prediction
Bryan Kelly,
Semyon Malamud and
Kangying Zhou
No 17194, CEPR Discussion Papers from C.E.P.R. Discussion Papers
Abstract:
We theoretically characterize the behavior of return prediction models in the high complexity regime, i.e. when the number of parameters exceeds the number of observations. Contrary to conventional wisdom in finance, return prediction R2 and optimal portfolio Sharpe ratio generally increase with model parameterization, even when minimal regularization is used. Empirically, we document this "virtue of complexity" in US equity market prediction. High complexity models deliver economically large and statistically significant out-of-sample portfolio gains relative to simpler models, due in large part to their remarkable ability to predict recessions.
Keywords: Portfolio choice; Machine learning; Random matrix theory; Benign overfit; Overparameterization (search for similar items in EconPapers)
JEL-codes: C3 C58 C61 G11 G12 G14 (search for similar items in EconPapers)
Date: 2022-04
References: Add references at CitEc
Citations:
Downloads: (external link)
https://cepr.org/publications/DP17194 (application/pdf)
CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cpr:ceprdp:17194
Ordering information: This working paper can be ordered from
https://cepr.org/publications/DP17194
orders@cepr.org
Access Statistics for this paper
More papers in CEPR Discussion Papers from C.E.P.R. Discussion Papers Centre for Economic Policy Research, 33 Great Sutton Street, London EC1V 0DX.
Bibliographic data for series maintained by (repec@cepr.org).