Nonstationary Density Estimation and Kernel Autoregression
Peter Phillips and
Joon Park
No 1181, Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University
Abstract:
An asymptotic theory is developed for the kernel density estimate of a random walk and the kernel regression estimator of a nonstationary first order autoregression. The kernel density estimator provides a consistent estimate of the local time spent by the random walk in the spatial vicinity of a point that is determined in part by the argument of the density and in part by initial conditions. The kernel regression estimator is shown to be consistent and to have a mixed normal limit theory. The limit distribution has a mixing variate that is given by the reciprocal of the local time of a standard Brownian motion. The permissible range for the bandwidth parameter h_{n} includes rates which may increase as well as decrease with the sample size n, in contrast to the case of a stationary autoregression. However, the convergence rate of the kernel regression estimator is at most n^{1/4}, and this is slower than that of a stationary kernel autoregression, in contrast to the parametric case. In spite of these differences in the limit theory and the rates of convergence between the stationary and nonstationary cases, it is shown that the usual formulae for confidence intervals for the regression function still apply when h_{n} -> 0.
Keywords: Brownian sheet; kernel regression; local time; martingale embedding; mixture normal; nonstationary density; occupation time; quadratic variation; unit root autoregression (search for similar items in EconPapers)
Pages: 27 pages
Date: 1998-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (64)
Downloads: (external link)
https://cowles.yale.edu/sites/default/files/files/pub/d11/d1181.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cwl:cwldpp:1181
Ordering information: This working paper can be ordered from
Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA
The price is None.
Access Statistics for this paper
More papers in Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University Yale University, Box 208281, New Haven, CT 06520-8281 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Brittany Ladd ().