Conditional Projection by Means of Kalman Filtering
Richard Clarida and
Diane Coyle
No 702, Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University
Abstract:
We establish that the recursive, state-space methods of Kalman filtering and smoothing can be used to implement the Doan, Litterman, and Sims (1983) approach to econometric forecast and policy evaluation. Compared with the methods outlined in Doan, Litterman, and Sims, the Kalman algorithms are more easily programmed and modified to incorporate different linear constraints, avoid cumbersome matrix inversions, and provide estimates of the full variance-covariance matrix of the constrained projection errors which can be used directly, under standard normality assumptions, to test statistically the likelihood and internal consistency of the forecast under study.
Pages: 12 pages
Date: 1984-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://cowles.yale.edu/sites/default/files/files/pub/d07/d0702.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
Working Paper: Conditional Projection by Means of Kalman Filtering (1984) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cwl:cwldpp:702
Ordering information: This working paper can be ordered from
Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA
The price is None.
Access Statistics for this paper
More papers in Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University Yale University, Box 208281, New Haven, CT 06520-8281 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Brittany Ladd ().