Estimating Long Run Economic Equilibria
Peter Phillips and
Mico Loretan
No 928, Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University
Abstract:
Our subject is econometric estimation and inference concerning long-run economic equilibria in models with stochastic trends. Our interest is focused on single equation specifications such as those employed in the Error Correction Model (ECM) methodology of David Hendry (1987, 1989 inter alia) and the semiparametric modified least squares method of Phillips and Hansen (1989). We start by reviewing the prescriptions for empirical time series research that are presently available. We argue that the diversity of choices is confusing to practitioners and obscures the fact that statistical theory is clear about optimal inference procedures. Part of the difficulty arises from the many alternative time series representations of cointegrated systems. We present a detailed analysis of these various representations, the links between them, and the estimator choices to which they lead. An asymptotic theory is provided for a wide menu of econometric estimators and system specifications, accommodating different levels of prior information about the presence of unit roots and the nature of short-run dynamic adjustments. The single equation ECM approach is studied in detail and our results lead to certain recommendations. Weak exogeneity and data coherence are generally insufficient for valid conditioning on the regressors in this approach. Strong exogeneity and data coherency are sufficient to validate conditioning. But the requirement of strong exogeneity rules out most cases of interest because long-run economic equilibrium typically relates interdependent variables for which there is substantial time series feedback. One antidote for this problem in practice is the inclusion of leads as well as lags in the differences of the regressors. The simulations that we report, as well as the asymptotic theory support the use of this procedure in practice. Our results also support the use of dynamic specifications that involve lagged long-run equilibrium relations rather than lagged differences in the dependent variable. Finally, our simulations point to problems of overfitting in single equation ECM's. These appear to have important implications for empirical research in terms of size distortions that are produced in significance tests that utilize nominal critical values delivered by conventional asymptotic theory. In sum, our results indicate that the single equation ECM methodology has good potential for further development and improvement. But in comparison with the semi parametric modified least squares method of Phillips and Hansen (1989) the latter method seems superior for inferential purposes in most cases.
Keywords: Co-integration; long-run equilibrium; error correction; semiparametric estimation; asymptotic theory; exogeneity (search for similar items in EconPapers)
Pages: 58 pages
Date: 1989-10
Note: CFP 785.
References: Add references at CitEc
Citations: View citations in EconPapers (67)
Published in Review of Economic Studies (1991), 58: 407-436
Downloads: (external link)
https://cowles.yale.edu/sites/default/files/files/pub/d09/d0928.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
Journal Article: Estimating Long-run Economic Equilibria (1991) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cwl:cwldpp:928
Ordering information: This working paper can be ordered from
Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA
The price is None.
Access Statistics for this paper
More papers in Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University Yale University, Box 208281, New Haven, CT 06520-8281 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Brittany Ladd ().