A Colored Version of Tverberg's Theorem
Imre Barany and
D.G. Larman
Additional contact information
Imre Barany: Dept. of Operations Research & Yale University
D.G. Larman: University College London
No 936, Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University
Abstract:
The main result of this paper is that given n red, n white, and n green points in the plane, it is possible to form n vertex-disjoint triangles Delta_{1},...,Delta_{n} in such a way that the Delta_{i} has one red, one white, and one green vertex for every i = 1,...,n and the intersection of these triangles is nonempty.
Keywords: Geometry (search for similar items in EconPapers)
Pages: 13 pages
Date: 1990-02
References: View complete reference list from CitEc
Citations:
Published in Journal of the London Mathematical Society (1992), 45(2): 314-320
Downloads: (external link)
https://cowles.yale.edu/sites/default/files/files/pub/d09/d0936.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cwl:cwldpp:936
Ordering information: This working paper can be ordered from
Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA
The price is None.
Access Statistics for this paper
More papers in Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University Yale University, Box 208281, New Haven, CT 06520-8281 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Brittany Ladd (cowles@yale.edu).