Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions
A. Gallant and
George Tauchen ()
No 97-09, Working Papers from Duke University, Department of Economics
Abstract:
We introduce reprojection as a general purpose technique for characterizing the observable dynamics of a partially observed nonlinear system. System parameters are estimated by method of moments wherein moments implied by the system are matched to moments implied by the transition density for observables that is determined by projecting the data onto its Hermite representation. Reprojection imposes the constraints implied by the system on the transition density and is accomplished by projecting a long simulation of the estimated system onto the Hermite representation. We utilize the technique to assess the dynamics of several diffusion models for the short-term interest rate that have been proposed and compare them to a new model that has feedback from the interest rate into both the drift and diffusion coefficients of a volatility equation. This effort entails the development of new graphical diagnostics.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Published in JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, Vol. 93, 1998, pages 10-24
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:duk:dukeec:97-09
Access Statistics for this paper
More papers in Working Papers from Duke University, Department of Economics Department of Economics Duke University 213 Social Sciences Building Box 90097 Durham, NC 27708-0097.
Bibliographic data for series maintained by Department of Economics Webmaster ().