Simulation-Based Finite-Sample Inference in Simultaneous Equations
Lynda Khalaf and
Jean-Marie Dufour ()
No 239, Econometric Society 2004 North American Summer Meetings from Econometric Society
Abstract:
In simultaneous equation (SE) contexts, nuisance parameter, weak instruments and identification problems severely complicate exact and asymptotic tests (except for very specific hypotheses). In this paper, we propose exact likelihood based tests for possibly nonlinear hypotheses on the coefficients of SE systems. We discuss a number of bounds tests and Monte Carlo simulation based tests. The latter involves maximizing a randomized p-value function over the relevant nuisance parameter space which is done numerically by using a simulated annealing algorithm. We consider limited and full information models. We extend, to non-Gaussian contexts, the bound given in Dufour (Econometrica, 1997) on the null distribution of the LR criterion, associated with possibly non-linear- hypotheses on the coefficients of one Gaussian structural equation. We also propose a tighter bound which will hold: (i) for the limited information (LI) Gaussian hypothesis considered in Dufour (1997) and for more general, possibly cross-equation restrictions in a non-Gaussian multi-equation SE system. For the specific hypothesis which sets the value of the full vector of endogenous variables coefficients in a limited information framework, we extend the Anderson-Rubin test to the non-Gaussian framework. We also show that Wang and Zivot's (Econometrica, 1998) asymptotic bounds-test may be seen as an asymptotic version of the bound we propose here. In addition, we introduce a multi-equation Anderson-Rubin-type test. Illustrative Monte Carlo experiments show that: (i) bootstrapping standard instrumental variable (IV) based criteria fails to achieve size control, especially (but not exclusively) under near non-identification conditions, and (ii) the tests based on IV estimates do not appear to be boundedly pivotal and so no size-correction may be feasible. By contrast, likelihood ratio based tests work well in the experiments performed
Keywords: Simultaneous Equation; Weak Instruments; Monte Carlo test; Identification (search for similar items in EconPapers)
Date: 2004-08-11
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://repec.org/esNASM04/up.16075.1075315689.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:nasm04:239
Access Statistics for this paper
More papers in Econometric Society 2004 North American Summer Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().