Empirical Bayes Forecasts of One Time Series Using Many Predictors
Thomas Knox,
James H. Stock and
Mark Watson
Additional contact information
Thomas Knox: Harvard University
James H. Stock: Harvard University
No 1421, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
We consider the problem of forecasting a single time series, y(t+1), using a linear regression model with k predictor variables, X(t), when each predictor makes a small but nonzero marginal contribution to the forecast. It is well known that OLS is inadmissable when k is at least 3. Although Bayes estimators are admissable, the associated forecasts are unappealing because they can have large (frequentist) risk for some parameter values. We therefore consider Empirical Bayes estimators of the regression coefficients and their associated forecasts, when both the prior and regression error distributions are unknown. To focus attention on large k, we adopt a nesting where k is proportional to the sample size (T), and focus on the asymptotic properties of the true Bayes, Empirical Bayes, and OLS forecasts. We consider Bayes estimators that are functions of the OLS estimates, and propose a nonparametric Empirical Bayes estimator that is asymptotically optimal, in the sense that it achieves the Bayes risk of the best infeasible Bayes estimator when the true error distribution is normal. This result suggests that the Empirical Bayes estimator will have desirable frequentist risk as well. Both nonparametric and parametric Empirical Bayes estimators are examined in a Monte Carlo experiment, with results that are encouraging from both a Bayes and frequentist risk perspective. The new estimators are then applied to the problem of forecasting a few monthly postwar aggregate U.S. economic time series using the first 146 principal components from a large panel of predictor variables.
Date: 2000-08-01
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1421.pdf main text (application/pdf)
Related works:
Working Paper: Empirical Bayes Forecasts of One Time Series Using Many Predictors (2001) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1421
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().