Introduction to judgment aggregation
Christian List and
Ben Polak
LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library
Abstract:
This introduces the symposium on judgment aggregation. The theory of judgment aggregation asks how several individuals' judgments on some logically connected propositions can be aggregated into consistent collective judgments. The aim of this introduction is to show how ideas from the familiar theory of preference aggregation can be extended to this more general case. We first translate a proof of Arrow's impossibility theorem into the new setting, so as to motivate some of the central concepts and conditions leading to analogous impossibilities, as discussed in the symposium. We then consider each of four possible escape-routes explored in the symposium.
Keywords: Judgment aggregation; Arrow's theorem; Escape-routes (search for similar items in EconPapers)
JEL-codes: D70 D71 (search for similar items in EconPapers)
Date: 2010-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Published in Journal of Economic Theory, March, 2010, 145(2), pp. 441-466. ISSN: 1095-7235
Downloads: (external link)
http://eprints.lse.ac.uk/27900/ Open access version. (application/pdf)
Related works:
Journal Article: Introduction to judgment aggregation (2010) 
Working Paper: Introduction to Judgment Aggregation (2010) 
Working Paper: Introduction to Judgment Aggregation (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ehl:lserod:27900
Access Statistics for this paper
More papers in LSE Research Online Documents on Economics from London School of Economics and Political Science, LSE Library LSE Library Portugal Street London, WC2A 2HD, U.K.. Contact information at EDIRC.
Bibliographic data for series maintained by LSERO Manager ().