Exact and approximate multi-period mean-square forecast errors for dynamic econometric models
Neil Ericsson and
Jaime R. Marquez
No 348, International Finance Discussion Papers from Board of Governors of the Federal Reserve System (U.S.)
Abstract:
Both future disturbances and estimated coefficients contribute to the uncertainty in model-based ex ante forecasts, but only the first source is usually taken into account when calculating confidence intervals for practical applications. Schmidt (1974) and Baillie (1979) provide an easily computable second-order approximation to the mean-square forecast error (MSFE) for linear dynamic systems which recognizes both sources of uncertainty. To assess the accuracy of their approximation, and thus its usefulness, we compare it with three sets of estimates of the exact MSFE for the univariate AR(l) process: Monte Carlo estimates for OLS, analytically based values for OLS, and Monte Carlo estimates for maximum likelihood. We find that the Schmidt-Baillie formula is a good approximation to the exact MSFE, and that it helps explain why the exact MSFE can decrease as the forecast horizon increases. In fact, for dynamics typical to econometric models, the MSFE often has a maximum at a forecast horizon of one to twelve periods, i.e., at horizons that are of principal concern to forecasters and policy makers.
Keywords: Forecasting; Econometric models (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.federalreserve.gov/pubs/ifdp/1989/348/default.htm (text/html)
http://www.federalreserve.gov/pubs/ifdp/1989/348/ifdp348.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fip:fedgif:348
Access Statistics for this paper
More papers in International Finance Discussion Papers from Board of Governors of the Federal Reserve System (U.S.) Contact information at EDIRC.
Bibliographic data for series maintained by Ryan Wolfslayer ; Keisha Fournillier (ryan.d.wolfslayer@frb.gov).