EconPapers    
Economics at your fingertips  
 

Stochastic volatility

Torben Andersen () and Luca Benzoni

No WP-09-04, Working Paper Series from Federal Reserve Bank of Chicago

Abstract: Given the importance of return volatility on a number of practical financial management decisions, the efforts to provide good real- time estimates and forecasts of current and future volatility have been extensive. The main framework used in this context involves stochastic volatility models. In a broad sense, this model class includes GARCH, but we focus on a narrower set of specifications in which volatility follows its own random process, as is common in models originating within financial economics. The distinguishing feature of these specifications is that volatility, being inherently unobservable and subject to independent random shocks, is not measurable with respect to observable information. In what follows, we refer to these models as genuine stochastic volatility models. Much modern asset pricing theory is built on continuous- time models. The natural concept of volatility within this setting is that of genuine stochastic volatility. For example, stochastic-volatility (jump-) diffusions have provided a useful tool for a wide range of applications, including the pricing of options and other derivatives, the modeling of the term structure of risk-free interest rates, and the pricing of foreign currencies and defaultable bonds. The increased use of intraday transaction data for construction of so-called realized volatility measures provides additional impetus for considering genuine stochastic volatility models. As we demonstrate below, the realized volatility approach is closely associated with the continuous-time stochastic volatility framework of financial economics. There are some unique challenges in dealing with genuine stochastic volatility models. For example, volatility is truly latent and this feature complicates estimation and inference. Further, the presence of an additional state variable - volatility - renders the model less tractable from an analytic perspective. We examine how such challenges have been addressed through development of new estimation methods and imposition of model restrictions allowing for closed-form solutions while remaining consistent with the dominant empirical features of the data.

Keywords: Stochastic; analysis (search for similar items in EconPapers)
Date: 2009
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.chicagofed.org/digital_assets/publicati ... s/2009/wp2009_04.pdf (application/pdf)

Related works:
Working Paper: Stochastic Volatility (2010) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:fip:fedhwp:wp-09-04

Ordering information: This working paper can be ordered from

Access Statistics for this paper

More papers in Working Paper Series from Federal Reserve Bank of Chicago Contact information at EDIRC.
Bibliographic data for series maintained by Lauren Wiese ().

 
Page updated 2022-09-27
Handle: RePEc:fip:fedhwp:wp-09-04