Learning from failure
Andreas Blume and
April Franco
No 299, Staff Report from Federal Reserve Bank of Minneapolis
Abstract:
We study decentralized learning in organizations. Decentralization is captured through a symmetry constraint on agents? strategies. Among such attainable strategies, we solve for optimal and equilibrium strategies. We model the organization as a repeated game with imperfectly observable actions. A fixed but unknown subset of action profiles are successes and all other action profiles are failures. The game is played until either there is a success or the time horizon is reached. For any time horizon, including infinity, we demonstrate existence of optimal attainable strategies and show that they are Nash equilibria. For some time horizons, we can solve explicitly for the optimal attainable strategies and show uniqueness. The solution connects the learning behavior of agents to the fundamentals that characterize the organization: Agents in the organization respond more slowly to failure as the future becomes more important, the size of the organization increases and the probability of success decreases.
Keywords: Game; theory (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.minneapolisfed.org/research/sr/sr299.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fip:fedmsr:299
Access Statistics for this paper
More papers in Staff Report from Federal Reserve Bank of Minneapolis Contact information at EDIRC.
Bibliographic data for series maintained by Kate Hansel ().