A flexible approach to parametric inference in nonlinear time series models
Gary Koop and
Simon Potter
No 285, Staff Reports from Federal Reserve Bank of New York
Abstract:
Many structural break and regime-switching models have been used with macroeconomic and financial data. In this paper, we develop an extremely flexible parametric model that accommodates virtually any of these specifications - and does so in a simple way that allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in different ways, we can accommodate a wide range of nonlinear time series models. By allowing the state equation variances to depend on the distance between observations, the parameters can evolve in a wide variety of ways, allowing for models that exhibit abrupt change as well as those that permit a gradual evolution of parameters. We show how our model will (approximately) nest almost every popular model in the regime-switching and structural break literatures. Bayesian econometric methods for inference in this model are developed. Because we stay within a state space framework, these methods are relatively straightforward and draw on the existing literature. We use artificial data to show the advantages of our approach and then provide two empirical illustrations involving the modeling of real GDP growth.
Keywords: time series analysis; Economic forecasting; Econometric models (search for similar items in EconPapers)
Date: 2007
New Economics Papers: this item is included in nep-ets, nep-for and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr285.pdf (application/pdf)
https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr285.html (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fip:fednsr:285
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in Staff Reports from Federal Reserve Bank of New York Contact information at EDIRC.
Bibliographic data for series maintained by Gabriella Bucciarelli ().