Delegation to Artificial Intelligence can increase dishonest behaviour
Nils Köbis,
Zoe Rahwan,
Raluca Rilla,
Bramantyo Ibrahim Supriyatno,
Clara Bersch,
Tamer Ajaj,
Jean-François Bonnefon and
Iyad Rahwan ()
Additional contact information
Nils Köbis: Universität Duisburg-Essen = University of Duisburg-Essen [Essen], Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Zoe Rahwan: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Raluca Rilla: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Bramantyo Ibrahim Supriyatno: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Clara Bersch: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Tamer Ajaj: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Jean-François Bonnefon: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, TSM - Toulouse School of Management Research - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - CNRS - Centre National de la Recherche Scientifique - TSM - Toulouse School of Management - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse, CNRS - Centre National de la Recherche Scientifique
Iyad Rahwan: Max Planck Institute for Human Development - Max-Planck-Gesellschaft
Post-Print from HAL
Abstract:
Although artificial intelligence enables productivity gains from delegating tasks to machines1, it may facilitate the delegation of unethical behaviour2. This risk is highly relevant amid the rapid rise of ‘agentic' artificial intelligence systems3,4. Here we demonstrate this risk by having human principals instruct machine agents to perform tasks with incentives to cheat. Requests for cheating increased when principals could induce machine dishonesty without telling the machine precisely what to do, through supervised learning or high-level goal setting. These effects held whether delegation was voluntary or mandatory. We also examined delegation via natural language to large language models5. Although the cheating requests by principals were not always higher for machine agents than for human agents, compliance diverged sharply: machines were far more likely than human agents to carry out fully unethical instructions. This compliance could be curbed, but usually not eliminated, with the injection of prohibitive, task-specific guardrails. Our results highlight ethical risks in the context of increasingly accessible and powerful machine delegation, and suggest design and policy strategies to mitigate them.
Keywords: Decision making; Economics; Human behaviour (search for similar items in EconPapers)
Date: 2025-09
References: Add references at CitEc
Citations:
Published in Nature, 2025, pp.1-14. ⟨10.1038/s41586-025-09505-x⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05277822
DOI: 10.1038/s41586-025-09505-x
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().