EconPapers    
Economics at your fingertips  
 

Inexact subgradient methods for semialgebraic functions

Jérôme Bolte, Tam Le, Éric Moulines and Edouard Pauwels
Additional contact information
Jérôme Bolte: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Edouard Pauwels: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Post-Print from HAL

Abstract: Motivated by the extensive application of approximate gradients in machine learning and optimization, we investigate inexact subgradient methods subject to persistent additive errors. Within a nonconvex semialgebraic framework, assuming boundedness or coercivity, we establish that the method yields iterates that eventually fluctuate near the critical set at a proximity characterized by an distance, where denotes the magnitude of subgradient evaluation errors, and encapsulates geometric characteristics of the underlying problem. Our analysis comprehensively addresses both vanishing and constant step-size regimes. Notably, the latter regime inherently enlarges the fluctuation region, yet this enlargement remains on the order of . In the convex scenario, employing a universal error bound applicable to coercive semialgebraic functions, we derive novel complexity results concerning averaged iterates. Additionally, our study produces auxiliary results of independent interest, including descent-type lemmas for nonsmooth nonconvex functions and an invariance principle governing the behavior of algorithmic sequences under small-step limits.

Keywords: Inexact subgradient; Clarke subdifferential; Nonsmooth nonconvex optimization; Path differentiable functions; First-order methods; Semialgebraic functions (search for similar items in EconPapers)
Date: 2025-06-20
References: Add references at CitEc
Citations:

Published in Mathematical Programming, 2025, ⟨10.1007/s10107-025-02245-w⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05471240

DOI: 10.1007/s10107-025-02245-w

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2026-01-27
Handle: RePEc:hal:journl:hal-05471240