Comparaison de la prédictivité d'un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct
Pierre Desmet (pierre.desmet@dauphine.fr)
Post-Print from HAL
Abstract:
In comparison with other statistical methods (MCO, logistic regression, disciminant analysis, AID), the advantages of a neural network with retropropagation are numerous and well known (non linear effects, distribution free variables, low sensibility to outlyers or missing variables). However, implementation and efficiency have not yet received a strong interest. The paper reviews comparative analyses and presents the results obtained in predicting a behavior in Fund raising.
Keywords: scoring; réseau de neurones; logistique; prédictivité; collecte de fonds (search for similar items in EconPapers)
Date: 1996-01-25
References: Add references at CitEc
Citations:
Published in Recherche et Applications en Marketing (French Edition), 1996, 11 (2), pp.17-27
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00143454
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).