EconPapers    
Economics at your fingertips  
 

Pareto efficiency for the concave order and multivariate comonotonicity

Guillaume Carlier (), Rose-Anne Dana () and Alfred Galichon ()
Additional contact information
Guillaume Carlier: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Rose-Anne Dana: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Alfred Galichon: ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique

SciencePo Working papers Main from HAL

Abstract: This paper studies efficient risk-sharing rules for the concave dominance order. For a univariate risk, it follows from a comonotone dominance principle, due to Landsberger and Meilijson (1994), that efficiency is characterized by a comonotonicity condition. The goal of the paper is to generalize the comonotone dominance principle as well as the equivalence between efficiency and comonotonicity to the multidimensional case. The multivariate case is more involved (in particular because there is no immediate extension of the notion of comonotonicity), and it is addressed by using techniques from convex duality and optimal transportation.

Date: 2012
Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-01053549v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Published in Journal of Economic Theory, 2012, 147 (1), pp.207-229. ⟨10.1016/j.jet.2011.11.011⟩

Downloads: (external link)
https://sciencespo.hal.science/hal-01053549v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:spmain:hal-01053549

DOI: 10.1016/j.jet.2011.11.011

Access Statistics for this paper

More papers in SciencePo Working papers Main from HAL
Bibliographic data for series maintained by Contact - Sciences Po Departement of Economics ().

 
Page updated 2025-03-19
Handle: RePEc:hal:spmain:hal-01053549