Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the US
Yann Algan,
Elizabeth Beasley (),
Florian Guyot (),
Kazuhito Higad,
Fabrice Murtin and
Claudia Senik ()
Additional contact information
Elizabeth Beasley: CEPREMAP - Centre pour la recherche économique et ses applications - ECO ENS-PSL - Département d'économie de l'ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres
Florian Guyot: ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique
Kazuhito Higad: OCDE - Organisation de Coopération et de Développement Economiques = Organisation for Economic Co-operation and Development
Claudia Senik: PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique, UP4 - Université Paris-Sorbonne, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
SciencePo Working papers Main from HAL
Abstract:
We build an indicator of individual wellbeing in the United States based on Google Trends. The indicator is a combination of keyword groups that are endogenously identified to fit with weekly timeseries of subjective wellbeing measures collected by Gallup Analytics surveys. We show that such information from Big Data can be used to build a model that accurately forecasts survey-based measures of subjective well-being. The model successfully predicts the out-of-sample evolution of most subjective well-being measures at a one-year horizon. This opens up the possibility to use Big Data as a complement to traditional survey data to measure and analyze the well-being of population at high frequency and very local geographic level. We show that we can also exploit the internet search volume to elicit the main life dimensions related to well-being. We find that keywords associated with job search, financial security, family life and leisure are the strongest predictors of the variations in subjective well-being in the United States. This paper contributes to the new research agenda on data sciences by showing how Big Data can improve our understanding of the foundations of human well-being.
Keywords: Subjective well-being; Big data; Bayesian statistics (search for similar items in EconPapers)
Date: 2015-01-01
Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03429943v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://sciencespo.hal.science/hal-03429943v1/document (application/pdf)
Related works:
Working Paper: Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the US (2015) 
Working Paper: Big Data Measures of Well-Being: Evidence from a Google Well-Being Index in the US (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:spmain:hal-03429943
Access Statistics for this paper
More papers in SciencePo Working papers Main from HAL
Bibliographic data for series maintained by Contact - Sciences Po Departement of Economics ().