Swing Options Valuation:a BSDE with Constrained Jumps Approach
Marie Bernhart (),
Huyên Pham (),
Peter Tankov and
Xavier Warin ()
Additional contact information
Marie Bernhart: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique, EDF - EDF
Huyên Pham: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique, CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Xavier Warin: EDF - EDF, FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF
Working Papers from HAL
Abstract:
We introduce a new probabilistic method for solving a class of impulse control problems based on their representations as Backward Stochastic Differential Equations (BSDEs for short) with constrained jumps. As an example, our method is used for pricing Swing options. We deal with the jump constraint by a penalization procedure and apply a discrete-time backward scheme to the resulting penalized BSDE with jumps. We study the convergence of this numerical method, with respect to the main approximation parameters: the jump intensity $\lambda$, the penalization parameter $p > 0$ and the time step. In particular, we obtain a convergence rate of the error due to penalization of order $(\lambda p)^{\alpha - \frac{1}{2}}, \forall \alpha \in \left(0, \frac{1}{2}\right)$. Combining this approach with Monte Carlo techniques, we then work out the valuation problem of (normalized) Swing options in the Black and Scholes framework. We present numerical tests and compare our results with a classical iteration method.
Keywords: Backward stochastic differential equations with constrained jumps; Impulse control problems; Swing options; Monte Carlo methods (search for similar items in EconPapers)
Date: 2011-01
Note: View the original document on HAL open archive server: https://hal.science/hal-00553356v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-00553356v1/document (application/pdf)
Related works:
Working Paper: Swing Options Valuation: a BSDE with Constrained Jumps Approach (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00553356
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().