Swing Options Valuation: a BSDE with Constrained Jumps Approach
Marie Bernhart,
Huy\^en Pham,
Peter Tankov and
Xavier Warin
Papers from arXiv.org
Abstract:
We introduce a new probabilistic method for solving a class of impulse control problems based on their representations as Backward Stochastic Differential Equations (BSDEs for short) with constrained jumps. As an example, our method is used for pricing Swing options. We deal with the jump constraint by a penalization procedure and apply a discrete-time backward scheme to the resulting penalized BSDE with jumps. We study the convergence of this numerical method, with respect to the main approximation parameters: the jump intensity $\lambda$, the penalization parameter $p > 0$ and the time step. In particular, we obtain a convergence rate of the error due to penalization of order $(\lambda p)^{\alpha - \frac{1}{2}}, \forall \alpha \in \left(0, \frac{1}{2}\right)$. Combining this approach with Monte Carlo techniques, we then work out the valuation problem of (normalized) Swing options in the Black and Scholes framework. We present numerical tests and compare our results with a classical iteration method.
Date: 2011-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1101.0975 Latest version (application/pdf)
Related works:
Working Paper: Swing Options Valuation:a BSDE with Constrained Jumps Approach (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1101.0975
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().