Does the Estimation of the Propensity Score by Machine Learning Improve Matching Estimation? The Case of Germany's Programmes for Long Term Unemployed
Daniel Goller,
Michael Lechner,
Andreas Moczall () and
Joachim Wolff ()
Additional contact information
Andreas Moczall: Institute for Employment Research (IAB), Nuremberg
Joachim Wolff: Institute for Employment Research (IAB), Nuremberg
No 12526, IZA Discussion Papers from Institute of Labor Economics (IZA)
Abstract:
Matching-type estimators using the propensity score are the major workhorse in active labour market policy evaluation. This work investigates if machine learning algorithms for estimating the propensity score lead to more credible estimation of average treatment effects on the treated using a radius matching framework. Considering two popular methods, the results are ambiguous: We find that using LASSO based logit models to estimate the propensity score delivers more credible results than conventional methods in small and medium sized high dimensional datasets. However, the usage of Random Forests to estimate the propensity score may lead to a deterioration of the performance in situations with a low treatment share. The application reveals a positive effect of the training programme on days in employment for long-term unemployed. While the choice of the "first stage" is highly relevant for settings with low number of observations and few treated, machine learning and conventional estimation becomes more similar in larger samples and higher treatment shares.
Keywords: treatment effects; causal machine learning; active labour market policy; programme evaluation; radius matching; propensity score (search for similar items in EconPapers)
JEL-codes: C21 J68 (search for similar items in EconPapers)
Pages: 42 pages
Date: 2019-08
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Published - published in: Labour Economics, 2020, 65, 101855
Downloads: (external link)
https://docs.iza.org/dp12526.pdf (application/pdf)
Related works:
Journal Article: Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed (2020) 
Working Paper: Does the estimation of the propensity score by machine learning improve matching estimation?: The case of Germany's programmes for long term unemployed (2020) 
Working Paper: Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:iza:izadps:dp12526
Ordering information: This working paper can be ordered from
IZA, Margard Ody, P.O. Box 7240, D-53072 Bonn, Germany
Access Statistics for this paper
More papers in IZA Discussion Papers from Institute of Labor Economics (IZA) IZA, P.O. Box 7240, D-53072 Bonn, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Holger Hinte ().