On Modifying Singular Values to Solve Possible Singular Systems of Non-Linear Equations
David M. Gay
No 125, NBER Working Papers from National Bureau of Economic Research, Inc
Abstract:
We show that if a certain nondegeneracy assumption holds, it is possible to guarantee the existence of a solution to a system of nonlinear equations f(x) = 0 whose Jacobian matrix J(x) exists but maybe singular. The main idea is to modify small singular values of J(x) in such away that the modified Jacobian matrix J^(x) has a continuous pseudoinverse J^+(x)and that a solution x* of f(x) = 0 may be found by determining an asymptote of the solution to the initial value problem x(0) = x[sub0}, x’(t) = -J^+(x)f(x). We briefly discuss practical (algorithmic) implications of this result. Although the nondegeneracy assumption may fail for many systems of interest (indeed, if the assumption holds and J(x*) is non-singular, then x is unique), algorithms using(x) may enjoy a larger region of convergence than those that require(an approximation to) J[to the -1 power[(x).
Date: 1976-03
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.nber.org/papers/w0125.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:0125
Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w0125
Access Statistics for this paper
More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().