EconPapers    
Economics at your fingertips  
 

On Modifying Singular Values to Solve Possible Singular Systems of Non-Linear Equations

David M. Gay

No 125, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: We show that if a certain nondegeneracy assumption holds, it is possible to guarantee the existence of a solution to a system of nonlinear equations f(x) = 0 whose Jacobian matrix J(x) exists but maybe singular. The main idea is to modify small singular values of J(x) in such away that the modified Jacobian matrix J^(x) has a continuous pseudoinverse J^+(x)and that a solution x* of f(x) = 0 may be found by determining an asymptote of the solution to the initial value problem x(0) = x[sub0}, x’(t) = -J^+(x)f(x). We briefly discuss practical (algorithmic) implications of this result. Although the nondegeneracy assumption may fail for many systems of interest (indeed, if the assumption holds and J(x*) is non-singular, then x is unique), algorithms using(x) may enjoy a larger region of convergence than those that require(an approximation to) J[to the -1 power[(x).

Date: 1976-03
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.nber.org/papers/w0125.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:0125

Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w0125

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-03-19
Handle: RePEc:nbr:nberwo:0125