Commodity Connectedness
Francis Diebold,
Laura Liu and
Kamil Yilmaz ()
No 23685, NBER Working Papers from National Bureau of Economic Research, Inc
Abstract:
We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.
JEL-codes: G1 (search for similar items in EconPapers)
Date: 2017-08
New Economics Papers: this item is included in nep-net
Note: AP EFG IFM
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.nber.org/papers/w23685.pdf (application/pdf)
Related works:
Chapter: Commodity Connectedness (2018) 
Working Paper: Commodity Connectedness (2017) 
Working Paper: Commodity connectedness (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:23685
Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w23685
Access Statistics for this paper
More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().