EconPapers    
Economics at your fingertips  
 

Commodity Connectedness

Francis Diebold, Laura Liu and Kamil Yilmaz ()

No 23685, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.

JEL-codes: G1 (search for similar items in EconPapers)
Date: 2017-08
New Economics Papers: this item is included in nep-net
Note: AP EFG IFM
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)

Downloads: (external link)
http://www.nber.org/papers/w23685.pdf (application/pdf)

Related works:
Chapter: Commodity Connectedness (2018) Downloads
Working Paper: Commodity Connectedness (2017) Downloads
Working Paper: Commodity connectedness (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:23685

Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w23685

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-03-22
Handle: RePEc:nbr:nberwo:23685