Economics at your fingertips  

Predicting High-Risk Opioid Prescriptions Before they are Given

Justine Hastings, Mark Howison and Sarah E. Inman

No 25791, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: Misuse of prescription opioids is a leading cause of premature death in the United States. We use new state government administrative data and machine learning methods to examine whether the risk of future opioid dependence, abuse, or poisoning can be predicted in advance of an initial opioid prescription. Our models accurately predict these outcomes and identify particular prior non-opioid prescriptions, medical history, incarceration, and demographics as strong predictors. Using our model estimates, we simulate a hypothetical policy which restricts new opioid prescriptions to only those with low predicted risk. The policy’s potential benefits likely outweigh costs across demographic subgroups, even for lenient definitions of “high risk.” Our findings suggest new avenues for prevention using state administrative data, which could aid providers in making better, data-informed decisions when weighing the medical benefits of opioid therapy against the risks.

JEL-codes: D61 I1 I12 I18 Z18 (search for similar items in EconPapers)
Date: 2019-04
New Economics Papers: this item is included in nep-big and nep-hea
Note: HC HE PE
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Published as in PNAS January 28, 2020 117 (4) 1917-192.

Downloads: (external link) (application/pdf)
Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at Free access is also available to older working papers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This working paper can be ordered from
The price is Paper copy available by mail.

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

Page updated 2020-07-09
Handle: RePEc:nbr:nberwo:25791