EconPapers    
Economics at your fingertips  
 

Unpacking Skill Bias: Automation and New Tasks

Daron Acemoglu and Pascual Restrepo ()

No 26681, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: The standard approach to modeling inequality, building on Tinbergen's seminal work, assumes factor-augmenting technologies and technological change biased in favor of skilled workers. Though this approach has been successful in conceptualizing and documenting the race between technology and education, it is restrictive in a number of crucial respects. First, it predicts that technological improvements should increase the real wages of all workers. Second, it requires sizable productivity growth to account for realistic changes in relative wages. Third, it is silent on changes in job and task composition. We extend this framework by modeling the allocation of tasks to factors and allowing richer forms of technological changes in particular, automation that displaces workers from tasks they used to perform, and the creation of new tasks that reinstate workers into the production process. We show that factor prices depend on the set of tasks that factors perform, and that automation: (i) powerfully impacts inequality; (ii) can reduce real wages; and (iii) can generate realistic changes in inequality with small changes in productivity. New tasks, on the other hand, can increase or reduce inequality depending on whether it is skilled or unskilled workers that have a comparative advantage in these new activities. Using industry-level estimates of displacement driven by automation and reinstatement due to new tasks, we show that displacement is associated with significant increases in industry demand for skills both before 1987 and after 1987, while reinstatement reduced the demand for skills before 1987, but generated higher demand for skills after 1987. The combined effects of displacement and reinstatement after 1987 explain a significant part of the shift towards greater demand for skills in the US economy.

JEL-codes: J23 J24 J31 O33 (search for similar items in EconPapers)
Date: 2020-01
New Economics Papers: this item is included in nep-ino, nep-lma and nep-tid
Note: EFG LS
References: Add references at CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Published as Daron Acemoglu & Pascual Restrepo, 2020. "Unpacking Skill Bias: Automation and New Tasks," AEA Papers and Proceedings, vol 110, pages 356-361.

Downloads: (external link)
http://www.nber.org/papers/w26681.pdf (application/pdf)
Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

Related works:
Journal Article: Unpacking Skill Bias: Automation and New Tasks (2020) Downloads
Working Paper: Unpacking Skill Bias: Automation and New Tasks (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:26681

Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w26681
The price is Paper copy available by mail.

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2020-08-01
Handle: RePEc:nbr:nberwo:26681