Asset Embeddings
Xavier Gabaix,
Ralph Koijen,
Robert Richmond and
Motohiro Yogo
No 33651, NBER Working Papers from National Bureau of Economic Research, Inc
Abstract:
Firm characteristics, based on accounting and financial market data, are commonly used to represent firms in economics and finance. However, investors collectively use a much richer information set beyond firm characteristics, including sources of information that are not readily available to researchers. We show theoretically that portfolio holdings contain all relevant information for asset pricing, which can be recovered under empirically realistic conditions. Such guarantees do not exist for other data sources, such as accounting or text data. We build on recent advances in artificial intelligence (AI) and machine learning (ML) that represent unstructured data (e.g., text, audio, and images) by high-dimensional latent vectors called embeddings. Just as word embeddings leverage the document structure to represent words, asset embeddings leverage portfolio holdings to represent firms. Thus, this paper is a bridge from recent advances in AI and ML to economics and finance. We explore various methods to estimate asset embeddings, including recommender systems, shallow neural network models such as Word2Vec, and transformer models such as BERT. We evaluate the performance of these models on three benchmarks that can be evaluated using a single quarter of data: predicting relative valuations, explaining the comovement of stock returns, and predicting institutional portfolio decisions. We also estimate investor embeddings (i.e., representations of investors and their strategies), which are useful for investor classification, performance evaluation, and detecting crowded trades. We discuss other applications of asset embeddings, including generative portfolios, risk management, and stress testing. Finally, we develop a framework to give an economic narrative to a group of similar firms, by applying large language models to firm-level text data.
JEL-codes: C53 G12 G23 (search for similar items in EconPapers)
Date: 2025-04
Note: AP
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.nber.org/papers/w33651.pdf (application/pdf)
Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:33651
Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w33651
The price is Paper copy available by mail.
Access Statistics for this paper
More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().