EconPapers    
Economics at your fingertips  
 

Deep Learning for Solving Economic Models

Jesus Fernandez-Villaverde

No 34250, NBER Working Papers from National Bureau of Economic Research, Inc

Abstract: The ongoing revolution in artificial intelligence, especially deep learning, is transforming research across many fields, including economics. Its impact is particularly strong in solving equilibrium economic models. These models often lack closed-form solutions, so economists have relied on numerical methods such as value function iteration, perturbation, and projection techniques. While powerful, these approaches face the curse of dimensionality, making global solutions computationally infeasible as the number of state variables increases. Recent advances in deep learning offer a new paradigm: flexible tools that efficiently approximate complex functions, manage high-dimensional problems, and expand the reach of quantitative economics. After introducing the basic concepts of deep learning, I illustrate the approach with the neoclassical growth model and discuss related ideas, including the double descent phenomenon and implicit regularization.

JEL-codes: C45 C61 C63 C68 (search for similar items in EconPapers)
Date: 2025-09
New Economics Papers: this item is included in nep-cmp
Note: EFG
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.nber.org/papers/w34250.pdf (application/pdf)
Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nbr:nberwo:34250

Ordering information: This working paper can be ordered from
http://www.nber.org/papers/w34250
The price is Paper copy available by mail.

Access Statistics for this paper

More papers in NBER Working Papers from National Bureau of Economic Research, Inc National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.. Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-10-01
Handle: RePEc:nbr:nberwo:34250