HIERARCHIES OF BELIEF AND INTERIM RATIONALIZABILITY
Jeffrey Ely and
Marcin Peski
No 1388, Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science
Abstract:
In games with incomplete information, conventional hierarchies of belief are incomplete as descriptions of the players’ information for the purposes of determining a player’s behavior. We show by example that this is true for a variety of solution concepts. We then investigate what is essential about a player’s information to identify rationalizable behavior in any game. We do this by constructing the universal type space for rationalizability and characterizing the types in terms of their beliefs. Infinite hierarchies of beliefs over conditional beliefs, what we call delta-hierarchies, are what turn out to matter. We show that any two types in any two type spaces have the same rationalizable sets in all games if and only if they have the same delta-hierarchies.
New Economics Papers: this item is included in nep-gth
References: Add references at CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.kellogg.northwestern.edu/research/math/papers/hier6.pdf main text (application/pdf)
Related works:
Journal Article: Hierarchies of belief and interim rationalizability (2006) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nwu:cmsems:1388
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science Center for Mathematical Studies in Economics and Management Science, Northwestern University, 580 Jacobs Center, 2001 Sheridan Road, Evanston, IL 60208-2014. Contact information at EDIRC.
Bibliographic data for series maintained by Fran Walker ( this e-mail address is bad, please contact ).