Meta-Analysis with Robust Variance Estimation: Expanding the Range of Working Models
James Pustejovsky and
Elizabeth Tipton
No vyfcj, MetaArXiv from Center for Open Science
Abstract:
In prevention science and related fields, large meta-analyses are common, and these analyses often involve dependent effect size estimates. Robust variance estimation (RVE) methods provide a way to include all dependent effect sizes in a single meta-regression model, even when the nature of the dependence is unknown. RVE uses a working model of the dependence structure, but the two currently available working models are limited to each describing a single type of dependence. Drawing on flexible tools from multivariate meta-analysis, this paper describes an expanded range of working models, along with accompanying estimation methods, which offer benefits in terms of better capturing the types of data structures that occur in practice and improving the efficiency of meta-regression estimates. We describe how the methods can be implemented using existing software (the ‘metafor’ and ‘clubSandwich’ packages for R) and illustrate the approach in a meta-analysis of randomized trials examining the effects of brief alcohol interventions for adolescents and young adults.
Date: 2020-09-14
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://osf.io/download/5f5f8e2e1e8b9c01ade9370f/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:osf:metaar:vyfcj
DOI: 10.31219/osf.io/vyfcj
Access Statistics for this paper
More papers in MetaArXiv from Center for Open Science
Bibliographic data for series maintained by OSF ().