Divide-and-conquer: A proportional, minimal-envy cake-cutting algorithm
Steven Brams (),
Michael A. Jones and
Christian Klamler
MPRA Paper from University Library of Munich, Germany
Abstract:
We analyze a class of proportional cake-cutting algorithms that use a minimal number of cuts (n-1 if there are n players) to divide a cake that the players value along one dimension. While these algorithms may not produce an envy-free or efficient allocation--as these terms are used in the fair-division literature--one, divide-and-conquer (D&C), minimizes the maximum number of players that any single player can envy. It works by asking n ≥ 2 players successively to place marks on a cake--valued along a line--that divide it into equal halves (when n is even) or nearly equal halves (when n is odd), then halves of these halves, and so on. Among other properties, D&C ensures players of at least 1/n shares, as they each value the cake, if and only if they are truthful. However, D&C may not allow players to obtain proportional, connected pieces if they have unequal entitlements. Possible applications of D&C to land division are briefly discussed.
Keywords: mechanism design; fair division; divisible good; cake-cutting; divide-and-choose (search for similar items in EconPapers)
JEL-codes: C7 D63 D74 (search for similar items in EconPapers)
Date: 2010-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/22704/1/MPRA_paper_22704.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:22704
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().