Circumventing the problem of the scale: discrete choice models with multiplicative error terms
Mogens Fosgerau and
Michel Bierlaire
MPRA Paper from University Library of Munich, Germany
Abstract:
We propose a multiplicative specification of a discrete choice model that renders choice probabilities independent of the scale of the utility. The scale can thus be random with unspecified distribution. The model mostly outperforms the classical additive formulation over a range of stated choice data sets. In some cases, the improvement in likelihood is greater than that obtained from adding observed and unobserved heterogeneity to the additive specification. The multiplicative specification makes it unnecessary to capture scale heterogeneity and, consequently, yields a significant potential for reducing model complexity in the presence of heteroscedasticity. Thus the proposed multiplicative formulation should be a useful supplement to the techniques available for the analysis of discrete choices. There is however a cost to be paid in terms of increased analytical complexity relative to the additive formulations.
Keywords: Multivariate extreme value; logsum (search for similar items in EconPapers)
JEL-codes: C25 (search for similar items in EconPapers)
Date: 2007-07-03
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/3901/1/MPRA_paper_3901.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/42277/2/MPRA_paper_42277.pdf revised version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:3901
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter (winter@lmu.de).