EconPapers    
Economics at your fingertips  
 

Handling class imbalance in customer churn prediction

J. Burez and Dirk Van den Poel ()

Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium from Ghent University, Faculty of Economics and Business Administration

Abstract: Customer churn is often a rare event in service industries, but of great interest and great value. Until recently, however, class imbalance has not received much attention in the context of data mining (Weiss, 2004). In this study, we investigate how we can better handle class imbalance in churn prediction. Using more appropriate evaluation metrics (AUC, lift), we investigated the increase in performance of sampling (both random and advanced under-sampling) and two specific modelling techniques (gradient boosting and weighted random forests) compared to some standard modelling techniques. AUC and lift prove to be good evaluation metrics. AUC does not depend on a threshold, and is therefore a better overall evaluation metric compared to accuracy. Lift is very much related to accuracy, but has the advantage of being well used in marketing practice (Ling and Li, 1998). Results show that under-sampling can lead to improved prediction accuracy, especially when evaluated with AUC. Unlike Ling and Li (1998), we find that there is no need to under-sample so that there are as many churners in your training set as non churners. Results show no increase in predictive performance when using the advanced sampling technique CUBE in this study. This is in line with findings of Japkowicz (2000), who noted that using sophisticated sampling techniques did not give any clear advantage. Weighted random forests, as a cost-sensitive learner, performs significantly better compared to random forests, and is therefore advised. It should, however always be compared to logistic regression. Boosting is a very robust classifier, but never outperforms any other technique.

Keywords: rare events; class imbalance; undersampling; oversampling; boosting; random forests; CUBE; customer churn; classifier (search for similar items in EconPapers)
Pages: 27 pages
Date: 2008-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5) Track citations by RSS feed

Downloads: (external link)
http://wps-feb.ugent.be/Papers/wp_08_517.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rug:rugwps:08/517

Access Statistics for this paper

More papers in Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium from Ghent University, Faculty of Economics and Business Administration Contact information at EDIRC.
Bibliographic data for series maintained by Nathalie Verhaeghe ().

 
Page updated 2022-11-24
Handle: RePEc:rug:rugwps:08/517