EconPapers    
Economics at your fingertips  
 

Bootstrapping Non-Stationary Stochastic Volatility

H. Peter Boswijk (), Giuseppe Cavaliere (), Iliyan Georgiev and Anders Rahbek
Additional contact information
Iliyan Georgiev: University of Bologna
Anders Rahbek: University of Copenhagen

No 19-083/III, Tinbergen Institute Discussion Papers from Tinbergen Institute

Abstract: To what extent can the bootstrap be applied to conditional mean models – such as regression or time series models – when the volatility of the innovations is random and possibly non-stationary? In fact, the volatility of many economic and financial time series displays persistent changes and possible non-stationarity. However, the theory of the bootstrap for such models has focused on deterministic changes of the unconditional variance and little is known about the performance and the validity of the bootstrap when the volatility is driven by a non-stationary stochastic process. This includes near-integrated exogenous volatility processes as well as near-integrated GARCH processes, where the conditional variance has a diffusion limit; a further important example is the case where volatility exhibits infrequent jumps. This paper fills this gap in the literature by developing conditions for bootstrap validity in time series and regression models with non-stationary, stochastic volatility. We show that in such cases the distribution of bootstrap statistics (conditional on the data) is random in the limit. Consequently, the conventional approaches to proofs of bootstrap consistency, based on the notion of weak convergence in probability of the bootstrap statistic, fail to deliver the required validity results. Instead, we use the concept of `weak convergence in distribution' to develop and establish novel conditions for validity of the wild bootstrap, conditional on the volatility process. We apply our results to several testing problems in the presence of non-stationary stochastic volatility, including testing in a location model, testing for structural change using CUSUM-type functionals, and testing for a unit root in autoregressive models. Importantly, we show that sufficient conditions for conditional wild bootstrap validity include the absence of statistical leverage effects, i.e., correlation between the error process and its future conditional variance. The results of the paper are illustrated using Monte Carlo simulations, which indicate that a wild bootstrap approach leads to size control even in small samples.

Keywords: Bootstrap; Non-stationary stochastic volatility; Random limit measures; Weak convergence in Distribution (search for similar items in EconPapers)
JEL-codes: C32 (search for similar items in EconPapers)
Date: 2019-12-01
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://papers.tinbergen.nl/19083.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:tin:wpaper:20190083

Access Statistics for this paper

More papers in Tinbergen Institute Discussion Papers from Tinbergen Institute Contact information at EDIRC.
Bibliographic data for series maintained by Tinbergen Office +31 (0)10-4088900 ().

 
Page updated 2020-09-11
Handle: RePEc:tin:wpaper:20190083