EconPapers    
Economics at your fingertips  
 

Hard Tiling Problems with Simple Tiles

Cristopher Moore and John Michael Robson

Working Papers from Santa Fe Institute

Abstract: It is well-known that the question of whether a given finite region can be tiled with a given set of tiles is NP-complete. We show that the same is true for the right tromino and square tetromino on the square lattice, or for the right tromino alone. In the process, we show tthat Monotone 1-in-3 Satisfiability is NP-complete for planar cubic graphs. In higher dimensions, we show NP-completeness for the domino and straight tromino for general regions on the cubic lattice, and for simply-connected regions on the four-dimensional hypercubic lattice.

Keywords: Tilings; dominoes; polyominoes. (search for similar items in EconPapers)
Date: 2000-03
References: View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-03-019

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:00-03-019