Hard Tiling Problems with Simple Tiles
Cristopher Moore and
John Michael Robson
Working Papers from Santa Fe Institute
Abstract:
It is well-known that the question of whether a given finite region can be tiled with a given set of tiles is NP-complete. We show that the same is true for the right tromino and square tetromino on the square lattice, or for the right tromino alone. In the process, we show tthat Monotone 1-in-3 Satisfiability is NP-complete for planar cubic graphs. In higher dimensions, we show NP-completeness for the domino and straight tromino for general regions on the cubic lattice, and for simply-connected regions on the four-dimensional hypercubic lattice.
Keywords: Tilings; dominoes; polyominoes. (search for similar items in EconPapers)
Date: 2000-03
References: View complete reference list from CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-03-019
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().