The Small World Inside Large Metabolic Networks
Andreas Wagner and
David Fell
Working Papers from Santa Fe Institute
Abstract:
We analyze the structure of a large metabolic network, that of the energy and biosynthesis metabolism of Escherichia coli. This network is a paradigmatic case for the large genetic and metabolic networks that functional genomics efforts are beginning to elucidate. To analyze the structure of networks involving hundreds or thousands of components by simple visual inspection is impossible, and a quantitative framework is needed to analyze them. We propose a graph theoretical description of the E. coli metabolic network, a description that we hope will prove useful for other genetic networks. We find that this network is a small world graph, a type of graph observed in a variety of seemingly unrelated areas, such as friendship networks in sociology, the structure of electrical power grids, and the nervous system of C. elegans. Moreover, its connectivity follows a power law, another unusual but by no means rare statistical distribution. This architecture may serve to minimize transition times between metabolic states, and also reflect the evolutionary history of metabolism.
Date: 2000-07
New Economics Papers: this item is included in nep-ent and nep-net
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-07-041
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().