One-Dimensional Peg Solitaire, and Duotaire
Cristopher Moore and
David Eppstein
Working Papers from Santa Fe Institute
Abstract:
We solve the problem of one-dimensional Peg Solitaire. In particular, we show that the set of configurations that can be reduced to a single peg forms a regular language, and that a linear-time algorithm exists for reducing any configuration to the minimum number of pegs. We then look at the impartial two-player game, proposed by Ravikumar, where two players take turns making peg moves, and whichever player is left without a move loses. We calculate some simple nim-values and discuss when the game separates into a disjunctive sum of smaller games. In the version where a series of hops can be made in a single move, we show that neither the $\cal P$-positions nor the $\cal N$-positions (i.e. wins for the previous or next player) are described by a regular or context-free language.
Date: 2000-09
References: View complete reference list from CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-09-050
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().