EconPapers    
Economics at your fingertips  
 

One-Dimensional Peg Solitaire, and Duotaire

Cristopher Moore and David Eppstein

Working Papers from Santa Fe Institute

Abstract: We solve the problem of one-dimensional Peg Solitaire. In particular, we show that the set of configurations that can be reduced to a single peg forms a regular language, and that a linear-time algorithm exists for reducing any configuration to the minimum number of pegs. We then look at the impartial two-player game, proposed by Ravikumar, where two players take turns making peg moves, and whichever player is left without a move loses. We calculate some simple nim-values and discuss when the game separates into a disjunctive sum of smaller games. In the version where a series of hops can be made in a single move, we show that neither the $\cal P$-positions nor the $\cal N$-positions (i.e. wins for the previous or next player) are described by a regular or context-free language.

Date: 2000-09
References: View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-09-050

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:00-09-050