EconPapers    
Economics at your fingertips  
 

New Results on Alternating and Non-Deterministic Two-Dimensional Finite-State Automata

Jarkko Kari and Cristopher Moore

Working Papers from Santa Fe Institute

Abstract: We resolve several long-standing open questions regarding the power of various types of finite-state automata to recognize "picture languages," i.e. sets of two-dimensional arrays of symbols. We show that the languages recognized by 4-way alternating finite-state automata (AFAs) are incomparable to the so-called tiling recognizable languages. Specifically, we show that the set of acyclic directed graphs is AFA-recognizable but not tiling recognizable, while the set of non-acyclic directed graphs is tiling recognizable but not AFA-recognizable. More generally, the complement of an AFA-recognizable language is tiling recognizable, and therefore the AFA-recognizable languages are not closed under complement. We also show that the set of languages recognized by 4-way NFAs is not closed under complement, and that NFAs are more powerful than DFAs, even for languages over one symbol.

Date: 2000-09
References: View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:00-09-051

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:00-09-051