EconPapers    
Economics at your fingertips  
 

Field Theory of a Reaction-Diffusion Model of Quasispecies Dynamics

Romualdo Pastor-Satorras and Ricard V. Solé

Working Papers from Santa Fe Institute

Abstract: RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost through a second-order phase transition, which has been dubbed the ``error catastrophe.'' Here we explore this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies model [J. Swetina and P. Schuster, Biophys. Chem. 16, 329 (1982)], a single-sharp-peak landscape. In analogy with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is constructed. The proposed field theory belongs to the same universality class than a conserved reaction-diffusion model previously proposed [F. van Wijland et al., Physica A251, 179 (1998)]. From the field theory, we obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present the error catastrophe from a new point of view and suggest that spatial degrees of freedom can modify several mean field predictions previously considered, leading to the definition of characteristic exponents that could be experimentally measurable.

Date: 2001-05
New Economics Papers: this item is included in nep-evo
References: View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:01-05-024

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:01-05-024