Fast Approximation Algorithms for Finding Node-Independent Paths in Networks
Douglas White and
M. E. J. Newman
Working Papers from Santa Fe Institute
Abstract:
A network is robust to the extent that it is not vulnerable to disconnection by removal of nodes. The minimum number of nodes that need be removed to disconnect a pair of other nodes is called the connectivity of the pair. It can be proved that the connectivity is also equal to the number of node-independent paths between nodes, and hence we can quantify network robustness by calculating numbers of node-independent paths. Unfortunately, computing such numbers is known to be an NP-hard problem, taking exponentially long to run to completion. In this paper, we present an approximation algorithm which gives good lower bounds on numbers of node-independent paths between any pair of nodes on a directed or undirected graph in worst-case time which is linear in the graph size. A variant of the same algorithm can also calculate all the k-components of a graph in the same approximation. Our algorithm is found empirically to work with better than 99% accuracy on random graphs and for several real-world networks is 100% accurate. As a demonstration of the algorithm, we apply it to two large graphs for which the traditional NP-hard algorithm is entirely intractable--a network of collaborations between scientists and a network of business ties between biotechnology firms.
Keywords: Graph theory; social networks; cohesion; algorithms (search for similar items in EconPapers)
Date: 2001-07
New Economics Papers: this item is included in nep-ent and nep-net
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:01-07-035
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().