EconPapers    
Economics at your fingertips  
 

Fast Approximation Algorithms for Finding Node-Independent Paths in Networks

Douglas White and M. E. J. Newman

Working Papers from Santa Fe Institute

Abstract: A network is robust to the extent that it is not vulnerable to disconnection by removal of nodes. The minimum number of nodes that need be removed to disconnect a pair of other nodes is called the connectivity of the pair. It can be proved that the connectivity is also equal to the number of node-independent paths between nodes, and hence we can quantify network robustness by calculating numbers of node-independent paths. Unfortunately, computing such numbers is known to be an NP-hard problem, taking exponentially long to run to completion. In this paper, we present an approximation algorithm which gives good lower bounds on numbers of node-independent paths between any pair of nodes on a directed or undirected graph in worst-case time which is linear in the graph size. A variant of the same algorithm can also calculate all the k-components of a graph in the same approximation. Our algorithm is found empirically to work with better than 99% accuracy on random graphs and for several real-world networks is 100% accurate. As a demonstration of the algorithm, we apply it to two large graphs for which the traditional NP-hard algorithm is entirely intractable--a network of collaborations between scientists and a network of business ties between biotechnology firms.

Keywords: Graph theory; social networks; cohesion; algorithms (search for similar items in EconPapers)
Date: 2001-07
New Economics Papers: this item is included in nep-ent and nep-net
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:01-07-035

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:01-07-035