EconPapers    
Economics at your fingertips  
 

Evolving Protein Interaction Networks through Gene Duplication

Romualdo Pastor-Satorras, Eric Smith and Ricard V. Solé

Working Papers from Santa Fe Institute

Abstract: The topology of the proteome map revealed by recent large-scale hybridization methods has shown that the distribution of protein-protein interactions is highly heterogeneous, with many proteins having few links while a few of them are heavily connected. This particular topology is shared by other cellular networks, such as metabolic pathways, and it has been suggested to be responsible for the high mutational homeostasis displayed by the genome of some organisms. In this paper we explore a recent model of proteome evolution that has been shown to reproduce many of the features displayed by its real counterparts. The model is based on gene duplication plus re-wiring of the newly created genes. The statistical features displayed by the proteome of well-known organisms are reproduced, suggesting that the overall topology of the protein maps naturally emerges from the two leading mechanisms considered by the model.

Keywords: Proteomics; genomics; genome evolution; complex networks; scaling (search for similar items in EconPapers)
Date: 2002-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:02-02-008

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:02-02-008