Hybridized Crossover-Based Search Techniques for Program Discovery
Una-May O'Reilly and
Franz Oppacher
Working Papers from Santa Fe Institute
Abstract:
In this paper we address the problem of program discovery as defined by Genetic Programming. We have two major results: First, by combining a hierarchical crossover operator with two traditional single point search algorithms: Simulated Annealing and Stochastic Iterated Hill Climbing, we have solved some problems with fewer fitness evaluations and a greater probability of a success than Genetic Programming. Second, we have managed to enhance Genetic Programming by hybridizing it with the simple scheme of hill climbing from a few individuals, at a fixed interval of generations. The new hill climbing component has two options for generating candidate solutions: mutation or crossover. When it uses crossover, mates are either randomly created, randomly drawn from the population at large, or drawn from a pool of fittest individuals.
Date: 1995-02
References: View complete reference list from CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:95-02-007
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().