Genetic Algorithms and Heuristic Search
Terry Jones and
Stephanie Forrest
Working Papers from Santa Fe Institute
Abstract:
Genetic Algorithms (GAs) and heuristic search are shown to be structurally similar. The strength of the correspondence and its practical consequences are demonstrated by considering the relationship between fitness functions in GAs and the heuristic functions of AI. By examining the extent to which fitness functions approximate an AI ideal, a measure of GA search difficulty is defined and applied to previously studied problems. The success of the measure in predicting GA performance (1) illustrates the potential advantages of viewing evolutionary search from a heuristic search perspective and (2) appears to be an important step toward answering a question that has been the subject of much research in the GAs community: what makes search hard (or easy) for a GA?
Date: 1995-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:95-02-021
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().