Crossover, Macromutation, and Population-Based Search
Terry Jones
Working Papers from Santa Fe Institute
Abstract:
A Genetic Algorithm (GA) maintains a population of individuals for the express purpose of improving performance via communication of information between contemporary individuals. This is achieved in a GA through the use of a crossover operator. If crossover is not a useful method for this exchange, the GA should not, on average, perform any better than a variety of simpler algorithms that are not population-based. A simple method for testing the usefulness of crossover for a particular problem is presented. This makes it possible to identify situations in which crossover is apparently useful but is in fact producing gains that are only equal to (or less than) those that can be obtained with macromutation and no population.
Date: 1995-02
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:95-02-024
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().