EconPapers    
Economics at your fingertips  
 

The Evolutionary Design of Collective Computation in Cellular Automata

James P. Crutchfield, Melanie Mitchell and Rajarshi Das

Working Papers from Santa Fe Institute

Abstract: We investigate the ability of a genetic algorithm to design cellular automata that perform computations. The computational strategies of the resulting cellular automata can be understood using a framework in which "particles" embedded in space-time configurations carry information and interactions between particles effect information processing. This structural analysis can also be used to explain the evolutionary process by which the strategies were designed by the genetic algorithm. More generally, our goals are to understand how machine-learning processes can design complex decentralized systems with sophisticated collective computational abilities and to develop rigorous frameworks for understanding how the resulting dynamical systems perform computation.

Subitted to Machine Learning Journal.

Keywords: Genetic algorithm; cellular automata; collective computation (search for similar items in EconPapers)
Date: 1998-09
References: Add references at CitEc
Citations: View citations in EconPapers (2)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:98-09-080

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:98-09-080