EconPapers    
Economics at your fingertips  
 

Iteration, Inequalities, and Differentiability in Analog Computers

Manuel Lameiras Campagnolo, Cristopher Moore and José Félix Costa

Working Papers from Santa Fe Institute

Abstract: Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPAC-computable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F(x; t) 2 G such that F(x; t) = f t (x) for non-negative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the definition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k f(x) that sense inequalities in a differentiable way, the resulting class, which we call G + fk, is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T(x) is in G + k, then any function of x computable by a Turing machine in T(x) time is also.

Keywords: Analog computation; recursion theory; iteration; differentially algebraic functions; primitive recursive functions (search for similar items in EconPapers)
Date: 1999-07
References: View references in EconPapers View complete reference list from CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:99-07-043

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:99-07-043