CUSTOMER SATISFACTION MEASUREMENT MODELS: GENERALISED MAXIMUM ENTROPY APPROACH
Amjad Al-Nasser
Econometrics from University Library of Munich, Germany
Abstract:
This paper presents the methodology of the Generalised Maximum Entropy (GME) approach for estimating linear models that contain latent variables such as customer satisfaction measurement models. The GME approach is a distribution free method and it provides better alternatives to the conventional method; Namely, Partial Least Squares (PLS), which used in the context of costumer satisfaction measurement. A simplified model that is used for the Swedish customer satis faction index (CSI) have been used to generate simulated data in order to study the performance of the GME and PLS. The results showed that the GME outperforms PLS in terms of mean square errors (MSE). A simulated data also used to compute the CSI using the GME approach.
Keywords: Generalised Maximum Entropy; Partial Least Squares; Costumer Satisfaction Models. (search for similar items in EconPapers)
JEL-codes: C1 C2 C3 C4 C5 C8 (search for similar items in EconPapers)
Pages: 14 pages
Date: 2005-03-10
New Economics Papers: this item is included in nep-ecm
Note: Type of Document - pdf; pages: 14
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0503/0503013.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wpa:wuwpem:0503013
Access Statistics for this paper
More papers in Econometrics from University Library of Munich, Germany
Bibliographic data for series maintained by EconWPA ().