EconPapers    
Economics at your fingertips  
 

Prognose mit nichtparametrischen Verfahren

Wolfgang Härdle, Ying Chen and Rainer Schulz

No 2004,07, Papers from Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE)

Abstract: Statistische Prognosen basieren auf der Annahme, dass ein funktionaler Zusammenhang zwischen der zu prognostizierenden Variable y und anderen dimensionalen beobachtbaren Variablen x=(x1,...,xj)t – Rj besteht. Kann der funktionale Zusammenhang geschätzt werden, so kann im Prinzip für jedes x der zugehörige y Wert prognostiziert werden. Bei den meisten Anwendungen wird angenommen, dass der funktionale Zusammenhang einem niedrigdimensionalen parametrischen Modell entspricht oder durch dieses zumindest gut wiedergegeben wird. Ein Beispiel im bivariaten Fall ist das lineare Modell y=b(0)+b(1)x. Sind die beiden unbekannten Parameter b(0) und b(1) mit Hilfe historischer Daten geschätzt, so lässt sich für jedes gegebene x sofort der zugehörige y Wert prognostizieren. Allerdings besteht hierbei die Gefahr, dass der wirkliche funktionale Zusammenhang nicht dem gewählten Modell entspricht. Dies kann in Folge zu schlechten Prognosen führen.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22181/1/07_yc_wh_rs.pdf (application/pdf)

Related works:
Working Paper: Prognose mit nichtparametrischen Verfahren (2010) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:caseps:200407

Access Statistics for this paper

More papers in Papers from Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE) Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-31
Handle: RePEc:zbw:caseps:200407