A computational framework for analyzing dynamic auctions: The market impact of information sharing
John Asker,
Chaim Fershtman,
Jihye Jeon and
Ariel Pakes
RAND Journal of Economics, 2020, vol. 51, issue 3, 805-839
Abstract:
This article develops a computational framework to analyze dynamic auctions and uses it to investigate the impact of information sharing among bidders. We show that allowing for the dynamics implicit in many auction environments enables the emergence of equilibrium states that can only be reached when firms are responding to dynamic incentives. The impact of information sharing depends on the extent of dynamics and provides support for the claim that information sharing, even of strategically important data, need not be welfare reducing. Our methodological contribution is to show how to adapt the experience‐based equilibrium concept to a dynamic auction environment and to provide an implementable boundary‐consistency condition that mitigates the extent of multiple equilibria.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/1756-2171.12341
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:randje:v:51:y:2020:i:3:p:805-839
Ordering information: This journal article can be ordered from
http://www.blackwell ... al.asp?ref=0741-6261
Access Statistics for this article
RAND Journal of Economics is currently edited by James Hosek
More articles in RAND Journal of Economics from RAND Corporation Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().